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We analyze the thermal equilibrium distribution of 2 p mean field variables for 
the Hopfietd model with p stored patterns, in the case where 2 p is small com- 
pared to the number of spins. In particular, we give a full description of the free 
energy density in the thermodynamic limit, and of the so-called "'symmetric 
solutions" for the mean field equations. 
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1. I N T R O D U C T I O N  A N D  M A I N  RESULTS 

We consider Hopfield 's  model  tl=31 of an associative read-only memory  with 
p stored patterns in the case where 2 p is small compared  to the number  of  
degrees of  freedom (neurons, spins). The time evolution of this model  is the 
Glauber  dynamics  for a system of N interacting Ising spins Si with values 
+ ! or  - 1 ,  governed by a Hami l ton ian  of the form 

H N = -  E J SiSj- r, Si t1.1) 
l <<. i<j<~ N I ~ i ~  l~ r 

Here, the values of the coupling constants  Ju and Ti depend on the content  
of  the memory :  If  ~ = (~ ,  ~2,..., ~p) is an arbi t rary but fixed collection of  
spin configurations, representing the stored patterns, then the following 
constants  are chosen: 

1 P 
JO.=~ EI= ~ ; ,  T i = q{ ) '  (1.2) 

where v and r/ are external field parameters  which will be specified later. 
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904 Koch and Piasko 

The generalized Hopfield dynamics t4~ describes the retrieval, from a 
"noisy" memory, of p stored patterns by association with some input 
pattern. The retrieval process can be viewed as a random walk on the set 
5 p of spin configurations: If p is the delta function on 5" with peak at the 
input pattern, or any other probability distribution on 0 ~ then the spin 
distribution after one unit of time is given by Wp, 

(Wp)(S')= ~ W(S', S) p(S) (1.3) 
S E ,9 ~ 

The transition probabilities W(S', S) depend on the inverse temperature/~ 
of the noise, and are defined as follows. If S' can be obtained from S by 
flipping a single spin, then 

1 co(S') 
W(S', S ) -  (1.4) 

No(S) + co(S') 

where o denotes the normalized Gibbs distribution 

( )' co(S)= ~ e -~H~("'r e -~HNt"'~'s) (1.5) 
S e ,~' 

All other off-diagonal entries of W are zero, and the diagonal entries are 
determined by requiring that the probabilities W(S', S), for any fixed S, 
add up to one. 

From this definition it follows immediately that all matrix elements of 
W N are positive, and that W satisfies the detailed balance condition 
co(S) W(S', S) = co(S') W(S, S'), for any pair (S', S) of spin configurations. 
Thus, by the fundamental theorem of Monte Carlo calculus, W"p con- 
verges to co as n ~ o% for every probability distribution p on 0 ~ in contrast 
to the situation at zero temperature,(2' s, 13.14) where every local minimum of 
the energy function Hu  corresponds to an attractor of the Hopfield 
dynamics. As long as fl is finite, the retrieval of information is a transient 
process; after a sufficiently long time, the system starts to forget its initial 
condition, and approaches the thermal equilibrium state co. 

The first part of our analysis deals with the equilibrium properties of 
the Hopfield model with "unbiased" memories. More precisely, we consider 
the free energy per spin, averaged over all 2 pN possible choices of p 
patterns, 

FN(fl,~I)=2--PN~~Nln ( ~ e -r162 ( 1 . 6 )  

\ S e &  ~ / 

and we assume that 2 p ~ N. The averaging will be justified later by showing 
that, outside a negligible set of "biased" patterns ~, the free energy per spin 
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converges uniformly to the same value a s  F N (i.e., it is self-averaging), for 
large N. 

This model, and variations thereon, have been studied in detail in the 
case of a fixed finite number of patterns/4'6's ~o) As for the thermodynamic 
behavior, it is found that a second-order phase transition occurs at/3 = l, 
from a paramagnetic high-temperature phase (/~< 1) to a ferromagnetic 
low-temperature phase (/3> 1). The following theorem establishes the 
existence of this phase transition in a more general situation where the 
number of patterns is not necessarily finite. A proof is given in Section 2. 

Theorem 1.1. Fix /~r 1 and ~ <  1. Then the average free energy 
density FN(/?, r/) converges as N ~  oo for any positive integer v and for any 
sequence p = p ( N )  satisfying v ~< p and 2P<~N ~. The same holds for the 
magnetization rnN(/~, rl)= (c~/0tt) FN(fl, tl) if t/va 0. The corresponding limits 
F~ and rn~ only depend on (/?, r/), and they satisfy 

if; /~Fo~(/?, 0 )=  - I n  2 - ~  ai(t) 2 dt + (9(0) 
(1.7) 

m ~ (/~, rl) = sgn(t/) a~(/~) + (9(t/), r /C0 

where al(/~) is the largest solution of the equation tanh(/?ai)= a~. 

Note that if p is constant, then the 2p possible choices for (v, sgn r/) 
lead to 2p distinct phases at low temperature (by symmetry, the magnetiza- 
tion in the direction of ~' is zero for all/~ va v). If 2 p grows like N ~, with 
~ <  1, then an infinite number of these low-temperature phases are 
obtained. The case c~= 1 represents the borderline case for the methods 
used in our proof of Theorem 1.1, and possibly also for the validity of 
Eq. (1.7); but the phase portrai t is believed to be the same for all :~. On the 
other hand, if p grows at a rate proportional to N, the Hopfield model is 
expected to exhibit a spin glass phase.(7'l~) 

We shall now change to a reduced representation (of the Hopfield 
model), in which the independent degrees of freedom are d =  2 p mean field 
variables. (9/ Let {el, e2 ..... ed} be a fixed, ordered set which contains all 
vectors in NP whose components are either + 1 or - 1 .  Any choice of p 
patterns can then be regarded as a map ~: i ~ =  (~), ~ ..... ~f), which 
associates to every site i, 1 ~< i ~< N, one of the vectors ek. The map ~ defines 
a partition N = L  L + L 2 +  .-- + L d  of N, where Lk=Lk(~)  denotes the 
number of sites in ~-~(e~). It also determines a partition of the spin con- 
figuration space 5 P into subsets 

5P(Y)={SeS~:  ~ S~=Yk, l<~k<~d} (1.8) 
iE~-l(ek) 

822/55/5-6-4 



906 Koch and Piasko 

indexed by vectors Y s 2  J with components Yks { - - L k , - - L k + 2  ..... Lk}, 
1 ~< k ~< d. Such vectors will be referred to as mean field configurations. 

It is easy to check that the Hamiltonian H N is constant on each of the 
sets ~(Y) .  In addition, the Hopfield dynamics induces a random walk on 
the set q/ of mean field configurations, with transition probabilities 
given by 

1 
- -  ~ ~ W(S', S) (1.9) 

I/I/(Y', Y)= ]5'~(Y)b s~w(r~ s'~.>lr') 

To be more specific, we define a linear transformation A which maps 
functions on 5 p to functions on ~ ,  by the equation 

(Ap)(Y)= ~ p(S) (1.10) 
SeSP(Y) 

P r o p o s i t i o n  1.2. The matrix if/ is conjugate to W and satisfies 
detailed balance, i.e., (i) AW= if/A, and (ii) (Aoo)(Y) W(Y', Y)= (A~o)(Y') 
ff/(Y, Y') for every Y, Y 'e  ~/. 

From either of these two properties (whose proof is straightforward) 
it follows that every probability distribution on ~ to Am under 
the mean field dynamics defined by if/. The equilibrium distribution Am is 
the Gibbs distribution for the mean field Hamil tonian/ tN,  given by 

HN(fl, q,L, Y)---Hu(rh{,S)--~lnlJ(Y)l, SeSa(Y) (1.11) 

To simplify our discussion, we assume from now on that Lk = N/d, for 
1 ~< k ~< N. As far as the proof of Theorem 1.1 is concerned, this restriction 
is justified by the fact that the average (1.6) may be restricted to patterns 
satisfying ]Lk(~ ) -- N/dl < (N/d) 1/2 In N for all k, without affecting the limit 
N--+ oo; for details see Section 2. With all Lk set to N/d, and for zero 
external field, the mean field Hamiltonian becomes 

H-,N(fl, O,L, Y)=Nfi-~ln2+Nfl-lfe(dY)+,~(N) (1.12) 

where 
1 d , 

fl~(y)=~lk~=l fo~kdttanh-l(t)-~]lPy]} 2 (1.13) 

Here, H" H is the norm defined by the standard inner product on Ra, and P 
denotes the orthogonal projection in R a onto the subspace spanned by the 
p vectors e~= (e~, e~ ..... e}). Formally, it is now clear that in the limit 
N--+ oo, and for fixed, finite p, the average free energy density is determined 
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by the minimum of f~ on the hypercube [ - 1 ,  1 ]d. It can be shown that 
f~(y) takes on this minimum value if and only if 

y= +_al(fl)e ~, 1 <~#<~p (1.14) 

These 2p minimizing vectors (for fl > 1) are commonly referred to as 
retrieval states, since each of them is associated with exactly one of the 
stored patterns (e ~ is the mean field analogue of the pattern ~"). Below we 
will discuss other local minima of f/~, or so-called spurious states, which are 
associated with several patterns (thus corresponding to a confused 
memory). In numerical experiments, both types of "states" behave like 
attractors for the Hopfield dynamics if N is sufficiently large. We expect 
that any distribution on ~ whose support lies within a distance ~(N) of a 
local minimum Y of/~X will evolve first into a distribution which is essen- 
tially localized in a ball of radius (9(,~fN) around Y before spreading out 
significantly. Formal calculations indicate that the time scale for the 
localization process is of the order of N, while the time needed to reach an 
approximate thermal equilibrium grows exponentially with N. 

In the second part of this paper we consider the set of critical points 
of the function f~, or, equivalently, the solutions of the (mean field) 
equation 

y~ = tanh[fi(Py)~], 1 <~k<~d (1.15) 

()ur first result describes the so-called "symmetric solutions" of order n, 
whose existence, for all fl > 1 and n-G< p, has been conjectured in ref. 4, 
based on (numerical calculations and) expansions near f i=  1 and f l=  oo. 
A symmetric solution of order n > 0 (the case n = 0 corresponds to the 
trivial solution y = 0 )  can be obtained by making the ansatz 
y = a , ( e l +  ... + e ' ) +  w, with P w = 0 .  As shown in Section 3, this ansatz 
leads to the following equation for a,: 

O <~ m < n/2 FI 

T h e o r e m  1.3. Given f l> 1 and a positive integer n, Eq. (l.16) has 
a unique positive solution an = a~(fl). Furthermore, if (c~, c2,..., cp) is a 
vector of length n in ~P whose components are either 0 or _ 1, and if 
y ~ ~d is defined by 

yk=tanhIfia,(fl) ~ c~ef_], l<~k<~d (1.17) 

then the function fr has a critical point at y. 

For fl~< 1, it is easy to see that Eq. (1.15) admits only the trivial solu- 
tion, and that f ,  takes its minimum value for y =  0. This minimum turns 
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into a local maximum as fl is increased past its critical value fi = 1, and the 
remaining 3 p - 1  symmetric solutions bifurcate away from the origin. A 
qualitative picture of what happens near fl = 1 can be derived from general 
results in bifurcation theory; see ref. 10. A more direct approach, which 
also allows for explicit numerical bounds, is presented in Section 3. In 
particular, we prove the following result. 

T h e o r e m  1.4. Let l<fl<l+(9d+500p8) -~ and y ~ .  

(i) If J} has a critical point at y, then y is a symmetric solution of 
some order n ~< p. 

(ii) If fa  has a local manimum at y, then y is a symmetric solution 
of order n = 1. 

We note that, while some condition on fi is necessary in order for the 
conclusion of Theorem 1.4 to hold, the bound given here is clearly too 
restrictive. Numerical results ~4) indicate that there is an increasing sequence 
of inverse temperatures tim, starting with fl~ ~ 2.17, such that if fl is larger 
(smaller) than tim, then every symmetric solution of order 2 m + l  
corresponds to a local minimum (saddle point) of fp. In contrast, the 
symmetric solutions of even order seem to correspond to saddle points, for 
all fl > 1. 

Our last result concerns the observed qualitative difference between 
solutions of even and odd order. 

T h e o r e m  1.5. Let m be a positive integer not exceeding p/2, and 
assume that 

fl . 2 -2m- '  ( 2 2 )  > ln(fl) > 1 (1.18) 

Then f~ has a saddle point or local maximum at every symmetric solution 
of order 2m, and if 2m < p, f~ has a local minimum at every symmetric 
solution of order 2m + 1. 

Further details, including the proofs of Theorems 1.3-1.5, are given in 
Section 3. 

2. T H E  T H E R M O D Y N A M I C  L I M I T  

In this section we will prove Theorem 1.1. We start by deriving an 
explicit expression for the mean field Hamil tonian/ t :v ,  as defined in (1.11). 
Note that if S e 5~(Y), then 

N d d d 

E ~S,= ~ ~ ~*/S,= ~ e~ E S,= E e{Yk=---( d*, Y) 
t = l  k = l  ie~-l(ek) k = l  z e  g - t ( e k )  k - - 1  

(2.1/ 
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Using this identity, the mean field Hamiltonian can be written as follows: 

t2N(/3, ~, L, Y) 

~- 2N {~S, - r /  ~' ~ ,S ,+2  - I  
, u = l  i 1 i = 1  

2N~=l 

(2.2) 

The entropy term may be represented more conveniently by using Stirling's 
formula: There is a function g, satisfying the bound [g(L~, Y~_)l~< 
ln(Lk) + 1, such that 

dt tanh-l( t)  + g(L~, Y~) (2.3) In �89 + Y~) ~o 

In order to discuss the N dependence o f /1  N, let us now change to 
normalized variables by writing 

Lk= (1 + 2k)N/d. Yk=Lk3'k (2.4) 

The range of values for (2, y) is determined from that of the original 
variables (L, Y). In particular, y takes on values in the set 3"= 
{y~ [ - 1 ,  1]d: Lk(l + yk)/2 S N, 1 <~k<<.d}. Denoting by A the diagonal 
dx d matrix with entries Ak~ = 2~, we arrive at the following expression 
for /JN: 

N 
flHN(fl, q,L, Y)= --Nln2+-~f(fl , ,1,2, y)+ + ~ g(Lk, Y~) (2.5) 

k = I  

where 
/3 

J(fl, r/, 2, y ) =  - ~  ]IP(I +A)ylj2-f l t l(e ", (1 + A ) y )  

d 

+ ~ (1+2~) ~d t t anh  ~(t) (2.6) 
k = l  

The quantities of interest in this section are the free energy density 
FN. ~ and the magnetization raN.a, 

FN, d(fl, ~l, L)=  - - ~ l n  exp c-'~qN(''"-L" r)l 
y �9 (2.7) 

d F mN.~(/~. ,. L ) = ~  N.~(P. '7. L) 
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More precisely, if ~bx, e(L ) denotes one of the functions defined in (2.7), we 
would like to compute the average of ~)N,d(L(~)) o v e r  all possible choices 
of the patterns ~, 

N! 
2-PN~fbx'd(L(~))=d-N~ L~N,~ ~ LI' ~ ...La! ~u.a(L) (2.8) 

Here, ~u.a denotes the set of vectors in ~J whose components are non- 
negative integers which add up to N. The following proposition (a simple 
large-deviations estimate) will be used to approximate the sum (2.8) by a 
sum over "unbiased" patterns, represented by the set ~?lu,~= {LS~N,a: 
12kl <6, l<~k<~d}, for some fixed f i>0.  

Proposi t ion  2.1. There exists 60>0  such that ifd/N<<.6 <~(~o, then 

N! ( NS~ 
d-N ~ LIIL2!. . .Lj~<dNexp\ 2d/  (2.9) 

L E ~N,d\~b,N,d �9 

Proof. Assume that d<<.fN, and denote by .~ the set of all non- 
negative integers n ~< N which satisfy In - N/d1 >~ (N/d) ft. Since every vector 
in ~N,a\qlu.a has at least one of its d components in ~ ,  the left-hand side 
of (2.9) is bounded by 

N! ~r=-d.d N 

=d'd-N ~ L1 
L t E ~  

It is easy to check that the expression in square brackets, when considered 
as a function of L1, is increasing for LI < (N-  d+ 1)/d and decreasing for 
LI > ( N +  1)/d. Thus, if s is chosen such that L1 = (1 +e)N/d maximizes 
[ . . -]  on N, then 6 ~< 1el ~< 26, and 

a<~dN.d_N( N ) (N/d)(1 +el (d-  1)  N - l l + e ) s / d  (2.11) 

By applying Stirling's formula to the combinatorial factor on the right- 
hand side of inequality (2.11) and then simplifying the result, we obtain 

ln(cr) <<. ln(dN)- Ng(s)-~ ln IN ( l + ~) l + const (2.12) 

where 

' I 1 I I t2,3t g(s)=~l(l+e)ln(l+e)+ 1 - - ~ t ( l + s  ) In 1 ~ ' 
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An explicit calculation shows that g (0)=  g ' (0 )=0 ,  and that g"(e)>  1/d, 
for e sufficiently close to zero. Since ~ ~< |el ~< 23, we can now bound a as 
follows: 

~<~dNe-'~g~l<~ dNexp \ 2d ] (2.14) 

provided that 3 is sufficiently small, and d~< 3N. This proves the assertion 
of Proposition 2.1. | 

In what follows, the number p of patterns is assumed to be sufficiently 
small, such that d=2P<~N ~, for some fixed, positive constant ~ <  1. We 
also choose, once and for all, 

6 = (d/N) 1/2 in(N) (2.15) 

C o r o l l a r y  2.2 (Self-averaging). Let (N, d)~---~((gN, d:'~N,d---* ~) be a 
two-parameter sequence of functions, and assume that there are constants 
~bo~ and ~c, 2, M > 0  such that for N > M  and for d<~N ~ the following hold 

(a) j~bu.a(L)] ~<N x for all L ~ N ,  a. 

(b) I~N,a(L)--~] ~<N -~ for L ~ / N .  d. 

Then 
N~ 

d-N Le~S,#2 L~! L2! ...Ld!r162176176 <~2N -~ (2.16) 

provided that N is sufficiently large, and d~< NL 

Proof. Using Proposition 2.1 and assuming properties (a) and (b), 
we can bound the left-hand side of (2.16) as follows: 

N! 
d-N ~ LaI "..Ld! I~N,d(L)--@~I 

L ~ ~ N ,  d\U~ZN, d " 

NI 
+ d  - u  ~ I(JN.d(L)--O~I 

L~N.aLI ! ' ' '  Ld! 

~< (N ~ + [~b~[ )N 2 e -  ''" N)2/2 + N_~ (2.17) 

For sufficiently large N, the last expression is bounded by 2N -~. | 

Our aim is to apply this corollary to the free energy and to the 
magnetization, as defined in (2.7). The hypothesis (a) is easy to check in 
these two cases: Fu, d and raN, d are bounded in absolute value by 
p/2 + const = (~(ln N) and 1, respectively. We shall now work toward the 
proof of property (b). 
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Propos i t ion  2.3. 

/~/~N(/~, 

ProoL 
have 

For LE~IN.U, 

N Y) tl, L , Y ) + N l n Z - ~ f ( f i ,  tl, O, ~ < ( l + f i ) ( 3 + l t / l ) b N  (2.18) 

By using Eq. (2.5) and the fact that lYkl ~< 1 and [2kl ~<6, we 

2 N Y) flHu(fi, tl, L, Y) + Nln  - ~  f(fl, tl, O, 

d f(fl '  d p d Yk) = q , .~ , y ) -  f ( f l , ~ ,O ,y )+-~ -  ~ g(Lk, 
k ~ l  

<<.~ ( P ( 2 + A ) y ,  A y ) + f l q ( e ~ , A y )  

d Yk d 

- ~ 2k f  ~ dttanh l(t) + P +  ~ Ig(Lk, Yk)J 
k = l  k = l  

~ -  ( 2 + ~ ) 6 d + f l l ~ [ 6 d + 6 d l n 2  + 2 d l n N  

~ (1 +/3)(3 + I~/I) 6N | (2.19) 

Since the dominant contributions to the free energy density and the 
magnetization come from mean field configurations Y which minimize HN, 
we continue by estimating f(fi, rl, O, y) near its minimum. To do so, let us 
write 

f ( f l , ~ l , O , y ) = -  ~ h~(yk)+ I I (1-P)y l l  2 (2.20) 
k--1 

where, for Is] ~< 1, 

hk(s ) = dt [fltle~ + f i t -  t anh-1 (0  3 (2.21) 

At this point, it is necessary to distinguish between the high-tem- 
perature phase (fl < 1) and the low-temperature phase (fi > 1), and between 
large and small external fields r/. To avoid undue repetition, we will limit 
our discussion to fl > 1 and to small values of r/; the other cases can be 
treated similarly. 

If r/is sufficiently small (depending on fl, but not on d), then each of 
the functions hk has a unique positive maximum on each of the intervals 
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( - 1 ,  0) and (0, + 1). Denote by vk ( - )  and vk(+) the location of these 
maxima; then v~(_ ) =  +a~(f l )+ (~(r/), where al(fl)is the positive solution 
of the equation al = tanh(flal). 

D e f i n i t i o n  2.4. Given a vector y e RJ, define v(y)  to be the vector 
in [~d whose kth component is v~(sgn Yk) for 1 <~k<~d. Here, we use, e.g., 
the, convention that sgn 0 is positive. Furthermore, define u = v(r/e"). 

P r o p o s i t i o n  2.5. Let f i>  1. Then there are two positive constants 
cl < c, such that for any vector y in [ -  1, 1 ] d and for I q] sufficiently small, 

f ( f l ,  ~1, O, y)  = f([t,  q, O, u) + / / l<u  - v(>,),/e") I 

+ c ( y )  []y-v(y)]lz + �89 _ p ) y l ] 2  (2.22) 

where c(y)  and I are constants (depending on r/) which satisfy the bounds 
cl <~ c(y)  <<. c, and [ l -  t/] = (9(r/3 ), respectively. 

Proof. l is defined by writing the local minima of hk in the form 
hk(vk(+_ )) = Ek + flle;vk(+_ ). By computing the difference of these two 
values, we obtain 

f l  - i ~ I~( + )I 

levy = qe; + Iv,( + )] +Tvk( - )] ~h'k,- )1 dt [fit -- tanh - ' ( t ) ]  

= [r/+ 6'(r/3)] e; (2.23) 

Given y e [ - 1 ,  1 ]d, define xk = sgn(yk). Then we can write f ( f l ,  q, O, y)  as 
follows: 

d 

f(/~, ,1, 0, y ) =  -/~<v(>,), te ~') + ~ [ h , ( v ~ ( x ~ ) ) - h , ( y ~ ) - E ~ ]  
k = l  

+ ~ II(l - P)yl[ 2 (2.24) 

Since, for the values o f / / a n d  ,7 considered, hk has a quadratic maximum 
at v~(xk) which is unique in the interval bounded by 0 and xk, we have 

hk(Xk) - hk(yk)  <~ c, (2.25) 
c~<~ iv~(xk)_ ),,i ~_ 

with bounds c~, c, that are independent of k and y. As a consequence, 

f ( f l ,  rl, O, y ) =  - f l<v (y ) ,  le ~') + c(y)  IlY - v(Y)[I 2 

B 
- ~ E , + ~  I I (1-P)yl l  2 (2.26) 

k = l t  

for some constant c(y)  contained in the interval [ct, c,]. 
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Equation (2.22) is now obtained by using that the two norms in (2.26) 
vanish for y=u,  and that (v(y), le v) is maximized by y = u  [note also 
that v(u)= u]. Both of these properties follow from the fact that for 
l<~k<~d, 

sgn(uk)=sgn(Te;)=sgn(le;), lukt = max{lvk(- ) ] ,  [v~(+)/} = t  

(2.27) 

where t is the largest solution of the equation f17] + f i t - t a n h  ~(t)= 0. | 

The following two propositions, together with Corollary 2.2, prove the 
assertions of Theorem 1.1. 

P r o p o s i t i o n  2.6. There is a function F~(f,  q) with the following 
properties. If f > 1 and if 171 is sufficiently small, then 

IFN, d(f, 7, L ) - F ~ ( f ,  7)1 <. (d/N) 1/3 (2.28) 

for all L e 'g'N.a and for N sufficiently large. Furthermore, 

F ~ ( f ,  7 ) -  ln2 1 f ]  f 2f  dtal(t)2+C(7) (2.29) 

From the definition (2.7) and from Proposition 2.3, it follows Proof. 
that 

in 2 l 
FN.d(fi, 7, L)-- fl +-fi~f(fl, 7,0, u)+(9((~) 

-- fl---V in e -[f(~'n'O'v) f(fl'rlOu)]N/d (2.30) 
yEs 

for all L~'qlN, a. To get an upper bound on the sum over y, we will use 
that, for large N, the number of elements in Y" is bounded by 

d 

lY'{ = 1~ (Lk+ 1)~< (2N/d)a<.Ge ~u (2.31) 
k - - 1  

To get the corresponding lower bound, we note that there is a vector 
y'~.Y', which is sufficiently close to u, such that sgn(y~)=sgn(uk),  and 
l Y'~ - ukl <~ 3d/N, for 1 ~< k ~< d. By Proposition 2.5, 

0 <~ If(fi, 7, O, y') - f ( f l ,  7, O, u)l 

fl d 3 
< . ( c ,+~)  Hy'-uH2<~9(c,+~)~5<~6d (2.32) 
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and therefore 
p~[ >~ ~ e [f(fl'rl'O'Y)--f(P'~1"O'u)]N/d~e--&N (2.33) 

3 , ~  .J '  

This inequality, together with (2.31), shows that the last term in (2.30) is 
bounded by +6. The bound (2.28) follows if we define F~(fl, tl)= 
[ - l n  2 + f(fl, r/, 0, u)/d]/[L 

In order to prove (2.29), we need only consider the case r/= 0, since 

]f(fl, rl, O,u)- f ( f l ,  O,O,u)l=Xflrl(eV, u)J<~fldfrl] (2.34) 

From Eq. (2.6), using the fact that y=u(fl)=sgn(rl)a~(fl)e ~' minimizes 
f(fl, O, O, y), we obtain 

d , 

. ) + f (fi, O, O, u(fl)), --~ u(fl) 

1 1 2 =~ llru(~)lF~+0= -~a , ( f l )  d (2.35) 

'1"he assertion now follows since f(1, 0, 0, u(1))=f(1, 0, 0, 0) =0.  | 

P r o p o s i t i o n  2.7. There is a function m~(fl, tl) with the following 
properties. If fl > 1 and if [r/] > 0 is sufficiently small, then 

[m N, d(fl, rl, L ) -  m ~  (fi, q )r <~ 3(d/N) 1/5 (2.36) 

for all L ~ qlx.a and for N sufficiently large. Furthermore, 

m~(fi, q) = sgn(q) al(fi) + (9(q) (2.37) 

Proof. The magnetization mN. d is given by the following expression: 

mN.d( f l ,  17, L )  = 2 e--13E~N('8'rt'L'Y) 
.v ~ ,g" 

! 
x ~ 7 l ( e ~ , ( l + A ) y ) e  ~H~(~,,~.c.r) (2.38) 

y ~ X  

By writing the inner product in Eq. (2.38) as the sum 

1 1 1 
(e  v, (1 + A) y )  =71(e ~, u) +7t (ev' (1 + A) y - u )  (2.39) 
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we split the magnetization into a leading term mo~(fi, tl)=- (1/d)(e v, u)  and 
a remainder. The sum over y in the remainder is now estimated separately 
on the set R =  {yeY ' :  I ( y - u ,  e")l ~<ed} and on its complement, where 

= (d/N) 1/5. For y E R, we have 

1 1 1 
~l l (eV, ( l+A)y-u) l<<.~l l (eV,  Ay) l+~l l (eV,  y - u ) l < ~ 6 + g  (2.40) 

Using Proposition 2.3 and Proposition 2.6, we arrive at the bound 

1 
mx, d(fl, t/, L)--7t (ev' u)  

(z <. & + ~ + e--flI-IN(fl'tl'L' Y) 

\ y ~ ,,.g" 

x y" 1 L ( e V , ( l + A ) y - u ) l e  lSErN(#,,I,L, r~ 
y~JJ ' \R  

<~ 2e + e c~162 ~" e -  [f(fl'rhO' )')- f{fl'rl'O'ul]N/d (2.41) 
y E ~ ' \ R  

In order to estimate the last term in (2.41), we use the fact that for 
y e l \ R ,  f(fl, q, 0, y) cannot be very close to its minimum value. More 
precisely, if y lies in Y'\R, then either ](eV, u - v ( y ) ) [  >ed/2 holds, or 
[(e v, y - v ( y ) ) l  >ed/2. In the first case, it follows from Proposition 2.5 
that, for small )l[, 

f(fl, t/, O, y ) - f ( f l ,  t/, O, u)>~ �89 ed (2.42) 

In the second case, we combine Proposition 2.5 with the inequality 

][y--t)(),')ll2 ~> [ (e  v, y - v ( y ) ) [  2 [LeV[]-2 >/~;2d/4 (2.43) 

to obtain a similar result: 

f(fi, , ,  O, y ) - f ( f l ,  t/, O, u) ) (c j4)  s2d (2.44) 

By substituting these two bounds into (2.41), we find that, for g < It/l, 

m N ,  d ( f l  ' 1 t / ,L ) -7 t (eV ,  u> ~<2g+eC~(aN) Y ', e -~e2N (2.45) 
y ~ f \ R  

where K is some positive constant (depending on fl and t/). The number of 
terms in the sum over y is bounded by exp[C(&N)], as in (2.31). The asser- 
tion (2.36) now follows since 6/e2--* 0 as N tends to infinity, while (2.37) 
follows from the fact that u = sgn(t /)a~(fl)e '+ C(t/). | 
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3. THE  S Y M M E T R I C  S O L U T I O N S  

In this section we describe in more detail the set of critical points of 
the function f~, 

1 d , 
fp(y)=-l f(fl, O,O,y)=~lk~fokdttanh l( t )-~HPyll  2 (3.1) 

defined for y ~ ( -  1, 1)d. The number of patterns p is assumed to be fixed, 
but arbitrary, and d = 2  p. As mentioned in the introduction, the local 
minima of f~ are expected to play an important role for the dynamics of 
the Hopfield model. 

A well-known procedure for finding (e.g., numerically) the local 
minima of a function g is the method of steepest descent, which (in its sim- 
plest form) consists in iterating a map s  If 2 > 0  is 
chosen sufficiently small (such that the Hessian of 2g has only eigenvalues 
smaller than 2), then the stable fixed points of ~ are precisely the local 
minima of g. In the following, a map of this type will be used in order to 
distinguish local minima of fr from other critical points; this map is also 
closely related to the one used in refs. 8 and 10, and somewhat similar to 
the learning algorithm of ref. 15. 

Before applying the method of steepest descent, we may of course per- 
form a change of variables z ~ y such as the one defined by the equation 

y = Tanh(flz) - (tanh(fizl), tanh(flz2) ..... tanh(flzd)) (3.2) 

Proposition 3.1. If y is a local minimum of f~ in the hypercube 
( - 1, 1)d, then z = Py is a stable fixed point of the map 

Q~: z~-+PTanh(flPz), z s N  d (3.3) 

Conversely, if z is a stable fixed point of g?~, then y = Tanh(flz) is a local 
minimum of f~. 

Proof. The derivative of the function gr =f~(Tanh(f l - ) )  can be written 
as follows: 

Dg~(z; u) = - j  ( z - P Tanh(flz), Tanh'(fiz) �9 u )  (3.4) 

where % o" denotes the diagonal matrix associated with a vector v, i.e., 
(v �9 u)~= vku~. Since tanh'(flz)>0, we see that the critical points of gp 
coincide with the fixed points of s Assume now that (2~(z)= z. Then the 
second derivative of g/~ at z is given by 

D2g~(z; u, v) = ~- ( [Id - flP(Tanh'(flz). )] v, Tanh'(flz) �9 u )  (3.5) 
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Note that the matrix [ . . -]  in (3.5) is self-adjoint with respect to the inner 
product (v, u) = (v, Tanh'(flz) �9 u).  Thus, we have 

inf D2g(z; v, v) = )~) (3.6) 

where )v is the largest eigenvalue of flP(Tanh(flz).), or, equivalently 
(if 2 ~ 0 ) ,  the largest eigenvalue of the tangent map DY/~(z)= 
flP(Tanh'(flPz).)P of t2e at the fixed point z. | 

At high temperatures (f l< 1), the map Qe is easily seen to be a 
contraction, with fixed point z = 0 .  For fi~> l the situation is more 
complicated; but fortunately, the Hopfield model with orthogonal patterns 
(i.e., when L k = N/d for all k) has many symmetries. In order to describe 
these symmetries, let us denote by Cp the set of corners of the hypercube 
[--1, 1 ]P, and by E the map k ~ ek which was introduced earlier for the 
purpose of (arbitrarily) enumerating the elements of Cp. If ~ is a permuta- 
tion of the set Cp, we associate with ~ a linear transformation ~ on Nd by 
defining 

(TtY)k-= 39, j= E-I(~-'(E(k))) (3.7) 

for all y e ~u, and for 1 ~< k 4 d. Note that ~u is orthogonal with respect to 
the standard inner product in R d. The following permutations are of 
particular interest; see also ref. 12. For 1 ~< v, ~, 2 ~< p we define Ov and ~,~ 
by setting 

{ ~ c "  if /~=v 
(~v (C) )~  = c"  if # r  (3.8) 

{ c ~ if # = ), 

(O~).(c))" = c )" if # = K 

c ~ if #~ {~c, 2} 

for all c in Cp. If 6 is any of these permutations, then g,2= Id, and thus 
gJ is symmetric. Furthermore, the identity (gJe~)~=(6 l(e,))~, which 
follows directly from (3.7), shows that gJ,, acts on the set S = {e l, e2,..., e p } 
by multiplying the vector e v by - 1 ,  and g*~;~ acts on S by exchanging e ~ 
with e;. As a consequence, all of these transformations commute with P, 
the orthogonal projection onto the span of S. This proves the following 
proposition. 

Proposition 3.2. Let ~ be one of the permutations defined in 
(3.8). Then f2~o gt= g*o (2~ for all ft. 
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As another immediate consequence we have the following 
orthogonality property. Let I =  { 1, 2,..., p}, and for every subset J c  I let 

e~ J)= I1 el:, 1 <~k<<.d (3.9) 
# e J  

where the value of an empty product is defined to be 1. It is easy to see that 
e (J) iS an eigenvector of 5u~ for every J c  I and every v e l ;  the correspond- 
ing eigenvalue is - 1 if v e J and 1 if v r J. Since the operators 5u~ are sym- 
metric and commute with each other, the set {el J): J ~  I} is an orthogonal 
basis for ~a. 

The next two propositions establish, for /~> 1, the existence of 3 p 
"symmetric" fixed points for s Each of these fixed points is associated 

n p with a nonnegative integer n < p  and with one of the following 2 (~) 
vectors v e ~d: 

p P 

v= E E d =n (3.10) 
/ x = l  /~=1  

Proposition :3.3. Let 1 ~< n ~< p. If v satisfies (3.10), and if a is any 
real number, then s 7,(fla)v, where 7, is the function defined by the 
following equation: 

7,,(x) = 2 - "  + 1 }-~ (nm) n-2mtanh[(n-2m)x  ] (3.11) 
O <~ m < n / 2  n 

Proof. Given n > 0 and a vector v as in (3.10), denote by S the set 
of linear transformations 7 t which contains ~,. if and only if c~ = 0, g t  if 
and only if c~ = c). # 0, g~). Subj. ~). if and only if - c~ = c;~ # 0, and no other 
elements. It is easy to check that the only vectors z e p ~a  which satisfy 
5Uz = z for all ~u in S are the multiples of v. Since by Proposition 3.2 
we have 7~t2~(av)=f2~(ag~v)=s for all ~P in S, it follows that 
f2a(av) = a'v for some real number a'. 

In order to see that a ' =  7,(/?a), it is useful to write the components of 
v in the form 

P 

v~= ~ c~e~-m.l+(n--m).(-1)+(p-n).O- (3.12) 

where m =m(k)  is the number of elements/x in {1, 2 ..... p} for which c, ef~ 
is equal to 1. A moment's reflection shows that, given j, there are exactly 

m = 0  
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values of k for which v~ is equal to j. Thus, we have 

a ' =  Ilvl1-2 <v, Q~(av)) 
1 d 

nd ~ vk tanh(/3avk) 
k = l  

1 2 p-n E 6(2m-n-j)jtanh(/3aj) z - -  

nd j = O  m = O  

= 2  ~ tanh[(2m-n)/3a] 
m = O  n 

= 2  ~ + ' ~  (:)n-2mtanh[(n-2m)/3a]-- 
O < ~ m < n / 2  n 

II (3.14) 

P r o p o s i t i o n  3.4. For /3  > 1, the equation ?'n(/3a)= a has a unique 
positive solution a = an(/3 ). Moreover, 

(a) a,(/3) is an increasing function of/3 
(b) an(/~)-~2 ~+lt n- -1  ] /3___+ L(n 1)/2J1 a s  oo 

where Lrl  denotes the integer part of r 

(c) an(/3)2=(3/(3n-2))(/3-1)+C((/3-1) 2) as /310  

The proof of these statements is straightforward, given the following 
properties of 7~. 

P r o p o s i t i o n  3.5. The functions 7. are odd and satisfy 

(a) 7 . (x )>0 ,  7'n(x)>0, 7:'(x)<O for all x > 0  
(b) ) , . ( x ) ~ 2  n + l (  n 1 ~,L(n-l)/2J! as x--+ oo 
(c) 7 ' .(0)=1, 7 " ( 0 ) = - 2 ( 3 n - 2 )  

Proof. The inequalities (a) are obtained from the corresponding 
inequalities for the function tanh. Property (b) follows from (3.11): If we 
define ("/~1)=0 for m < 0 ,  then 

x ~ oo O <~ m < n /2  Fl 

n--1 

--2-"+~ (L( nn-1- 1 )/2 J) (3.15) 
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To prove (c), we use the representation 7 , (x)=  (1 /nd)(v ,  Tanh(xv)),  
with v = Z~ = 1 e". The ruth derivative of Vn at the origin is then given by the 
following equation: 

~ d  d m + l  7~)(0)=  tanh~m~(O) y'  v k 
k = l  

=tanh'm'(0) l ~ I I ~  ~ "e~m+I I n -  k l~k~k - (3.16) 

where S~M denotes the sum over all ordered sets M =  (#i,/~2,.--, ~m + 1) with 
1 ~< #j ~< n. Because of the orthogonality of the vectors (3.9), the expression 
[ .- .]  in (3.16) vanishes unless every element of M occurs an even number 
of times in M. If it does not vanish, then [-.-] = 1. For m = 1 there are 
n sets left which contribute to ZM, and thus 7"(0)= 1. If m = 3 ,  then 
there are n ( 3 n - 2 )  such sets, and 7 " ( 0 ) = - 2 ( 3 n - 2 )  follows since 
t a n h " ( 0 ) = - 2 .  | 

In the remaining part of this section, we discuss the stability of the 
symmetric fixed points for fl in the interval 

l < f l < l + ( 9 d + 5 0 0 p  8) 1 (3.17) 

as well as for large values of ft. In addition, we show that the symmetric 
fixed points are unique if fl satisfies (3.17); the following estimate is the first 
step of the proof. 

Proposition 3.6. 
z of s satisfies 

For 0 < fl < 1 + (1/9d), every nonzero fixed point 

Ilzll 2 < 23d(fl - 1) (3.18) 

ProoL Assume that s z, and let y = Tanh(fiz). By using that 
Py = z and that z~-yk = zk tanh(flz~)>~ 0 for all k, we obtain the following 
identities: 

d 

(/3- 1)llzl12= (/~- 1)Frzll2+ ~ yk[yk - - t anh ( f l z~ ) ]  
k = l  

d 

= [ly-zH 2 + ~ yk[ f l zk- - tanh( f lZk)]  
k = l  

d 

= I ly -z l l=+  ~ lYkl [ f l l zk l - - tanh( f l l zk l ) ]  
k = l  

(3.19) 

822/55/5-6-5 
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Since none of the terms in the last sum is negative, it follows that either 
z 0 o r / ~ >  1. 

Let us now assume that 1 < / { <  1 + (1/9d). Then (3.19) implies that 
I ly -z l l  2 has to be small; in particular, it follows that 

lflz~l = ~(lYkl  + lz~ - -  Ykl ) <~ /~[1 + (fl-- I)I/2 Nzll] 

, , ,0, 

The last term in (3.19) can now be bounded from below, by using (3.20) 
and the inequality t a n h " ( x )  ~< - 2  + 8x 2. 

d 

2 lykl (/~ Izkl -- tanh(B Izkl )) 
k = l  

>I F. lYNI (/~lzkl) 3 -  (/~Iz~I) 5 
k = I  

d 1 )3 

k = l  

~3 z 4 -  ~. lyk--Zk['lzkl 3 (3.21) 
>I]7 ,=~ ~=~ 

The two sums in the square bracket can be compared by using Eq. (3.19) 
again, together with the Schwartz inequality: 

d 

l Y ~ - - z k l "  Izkl 3 
k = l  

~< I ly-zl l -I lzl l  z 
k 1 

~< ( /~-  1) 1/2 Ilzll 2 z ~ 3  E "k'4 (3.22) 
k = l  k = l  

As a consequence of (3.19), (3.21), and (3.22), we have 

3 

( / ? -  1)Ilzl12>~ ~ z4~> 2/?~ Ilzll 4 (3.23) 
k=l ~ 45d 

and the bound (3.18) follows. | 

After having localized the fixed points in a small ball around z = 0, we 
can now use perturbation theory to rule out the existence of nonsymmetric 
fixed points of f2~ for/~ in the interval (3.17). 
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Proof of Theorem 1.4. By Proposition 3.1, we are led to consider 
the system 

( )) ~r e , T a n h  /? ~ b~e ~ =by, l<~v<<.p (3.24) 

which is equivalent to the fixed-point equation s'2~(z) = z if we set by = (l /d) 
(e  v, z) .  Note that, since the map Tanh commutes with all transformations 
g t  the inner product in (3.24) is an odd function of by and even in all the 
other coefficients b~. Thus, we may define 

gU(b2, b ~ , . . . , b 2 ) - ~  ~ e ; t anh  /? b~e~ , l<~v<<.p (3.25) 
k ~ l  p = l  

Furthermore, since the hyperbolic tangent is analytic on the disc Ir < n/2, 
the functions t ~ g"(tl,..., tp) can be continued analytically to the polydisk 

I t~ I < (n/2P) 2, 1 <<. # <~ p (3.26) 

The same holds for the functions g~, which we define as in (3.25), but with 
tanh replaced by tanhs, where 

tanhs(ff) = tanh(~) - ~ - 1 3 ~ ,  ~ ~ (3.27) 

In addition, g; vanishes at the origin, together with all its first partial 
derivatives, for 1 ~< v ~< p. The second derivatives can be bounded by using 
the maximum principle for analytic functions and Cauchy's formula with 
circular integration contours of radius 2p -2. Since Itanhs(~)l <4,  for 
I~1 < n/2, we have 

(~2 tp) 2! 4 4 p5 (3.28) 
gVs(tl'"" < Vp-Z) 2 3/(2p~ < 

if It, I ~< [1/(2p)] z for all #. This bound will be used below, together with 
Taylor's formula, in order to estimate g5 near the origin. 

The difference ( g ~ - g ; )  can be computed explicitly by using the 
orthogonality of the vectors defined in (3.9); see also the discussion of 
(3.16). We obtain 

-gs)(b~ ..... bp2) = / ~ + ~  e~ - 3  ~ ~ bue" 
k = l  1 1 = 1  

v /1 ~c 2 - f l  3b~ b~b~b~ e~e~eke e 
/z,~,),  = 1 k 1 

2 3 2 =/~_f13 ~ b 2 + ~ f l  by (3.29) 
p = l  
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This allows us to rewrite Eq. (3.24) as follows: 

b~ ( f l - 1 ) - f l  3 b 2 + ~ f l 3 b ~ + g s ( b l  ..... bp) =0,  l<<.v<~p 
, u = l  

Given a solution of these equations, let us define V= {v 1 ~< v ~< p, b~ r 0} 
and n = I VI. By summing the expression [ . . . ]  in (3.30) over all v ~ V, it is 
possible to write the sum b~ + ... + b 2 in terms of fl, n, and gs. After sub- 
stituting the result black into (3.30), we obtain the following equation for 
the variables t~ = b 2. 

t v -- 
3 3 9 

( 3 n _ Z ) f i 3 ( f i - 1 ) - 2 - ~ g ; ( t l , . . .  , tp)-~ (6n_4)fi3 ~ g~(t I ..... tp) 
I~E V 

(3.31) 

if v e V, and tv = 0 otherwise. In order to establish the existence of a unique 
solution to (3.31), we will use the contraction mapping principle in a ball 
N ( p ) =  {tc Ev: It~-Ovl <~p, v e  V}, centered at the vector 0, 

3 
O v - ( 3 n _ 2 ) f 1 3 ( f l - 1 ) ,  v e V  (3.32) 

For p we choose the value 26(f l -1) ,  so that if z = Z ~  vbve v satisfies the 
bound (3.18), then the vector t = (b~),,~ v lies in N(p). This guarantees that 
all (real) fixed points of f2~ will be obtained. Furthermore, as is easy to 
check, the restriction (3.17) on fl ensures that I tv I ~< 29(f i -  1) ~< [ 1/(2p)] 2 
for all t e N ( p ) ,  so that the bound (3.28) may be used. 

Denote by My(t)  the right-hand side of (3.31). Since 10vl ~< 3 ( f l -  1), we 
obtain 

(+ 9.) 
IMv(O)-Ovl <~ + (6nZ-4)f13 max,, Ig~(O)l 

4 1 _<1__ 
~<6 3 p7 "20~ '~ 40p Ov (3.33) 

if fl satisfies (3.17). This shows that the transformation M defined by 
(M(t))~ = My(t)  maps the center of N(p) into N(p/2). Thus, in order for M 
to have a unique fixed point in N(p), it is sufficient that M contracts 
distances (in the norm max,  It, l) by a factor of 2 or more. The 
following bound shows that this is indeed the case. By (3.31), (3.28), and 
(3.17), we have 



Hopfield Neural Network Model 925 

max ~v Mv(t) 
v ~ V  2 

~<nmax 0 M,.(t) 
2, v~ V "~2 

~<P + (6n-4)f13 

4 1 
<~ p .6 .~ p6. 29( f l -1 )  <-~ (3.34) 

As a consequence, the only solution of Eq. (3.31) is the symmetric 
solution, i.e., t~=a~(fl) 2 for all v~ V. The assertion now follows from 
Proposition 3.7 below. II 

For the following discussion of stability, let n ~> 2, and assume that z 
is a symmetric fixed point of order n for f2~, i.e., that z = a,,(fl)v, with v 
satisfying Eq. (3.10). Denote by P1 and P3 the orthogonal projections in Na 
onto the subspaces span{v} and { w E p [ ~ d :  (w, c j " ) = 0 ,  l~<#~<p}, 
respectively, and let P2 = P - P 1 -  P3- By using Proposition 3.2, it can be 
shown that the linearization of f2~ at the point z has the foloowing spectral 
representation: 

Dl2r = se  3 q- (S -- r)P2 + Is + (n - 1 )r] P1 (3.35) 

where s and r are given by the equations 

s = fl - ~ k~ l '= tanh2(flz~) 

tanh (flzk)eke ~, r=- c cv E 2 v 
k = l  

t~ # v, c,c~ # O 

(3.36) 

We note that the eigenvalue s of Df2B(z ) is always bounded on one 
side by ( s - r )  and on the other side by [ s +  ( n - 1 ) r ] .  Furthermore, as a 
consequence of Proposition 3.4, the eigenvalue [s + ( n -  1)r] lies between 
0 and 1 for all f l>  1; it is the slope of the function a~--,yn(fla) at the fixed 
point a =  a,,(fl). Thus, the eigenvalue ( s - r )  alone determines whether or 
not the fixed point z is stable. 

Propos i t ion  3.7. The symmetric fixed points of order n =  1 are 
stable for all f l>  1. For fl in the interval (3.17), all other fixed points of~2~ 
are unstable. 

Proof. Let z = an(fl)v be a symmetric fixed point of order n. If n = 0, 
then z is clearly unstable for all f l>  1, since z = 0  and Df2s tiP. If 
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n = 1, we obtain Df2a(z)= sP, with s given by Eq. (3.36), and it is easy to 
check that s < 1 for all fi > 1. 

Consider now n > 2 ,  and fl in the interval (3.17). By repeating the 
discussion of Eq. (3.31), but this time for the ball M((1/4p)O,.), we get the 
following bound on an(fl): 

where 0v 
we have 

is given by (3.32). In particular, since [tanh'"(x)l ~<2 and Ivkl ~ p ,  

(1) 
tanh(lflZkt)<<.(l+llflZkl2)tflZkl<<, l+~pp LflZx[ (3.38) 

The eigenvalue ( s - r )  of D~2~(z) can now be estimated as follows: 

d 

s -r=f l - -  ~ tanh-*(flzk)(1 , v - -  C # C v e k e k )  
k = l  

>1fl- 1+ ~ (flzk) 2(1 , v - -  c , u c v e k e k )  

= 1  

( 1) I 39t >>.fl_fl3 l + p  0 ~ ( n - 2 ) = l +  

This shows that the fixed point z is unstable. For  details on how to 
evaluate the expression [ . . - ]  in (3.39) we refer to the discussion following 
Eq. (3.16). | 

Remark. For  fl > 1, the symmetric fixed points of order n = 1 are not 
only stable, but they also minimize f~. This follows from Proposition 2.5. 

P r o p o s i t i o n  3.8. Let n be an even positive integer, and assume 
that fl satisfies 

n/2 > 1 (3.40) 

Then all symmetric fixed points of order n are unstable. 

Proof. Let z = a,(fl)v be a symmetric fixed point of even order n > 0, 
and define Z =  {k: 1 <~k~d, v~=0}.  It is easy to see that Z contains 
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exactly 9p-~t  n - ~,,/2J elements. Thus, if fl satisfies (3.40), the eigenvalue s of 
DY2~(z) can be bounded  as follows: 

S = ~ k ~ l  [l_tanh2(fiZk)]>~ 2 p-n n 2 n n .= n/2 = fl" n/2 > 1 II (3.41) 

P r o p o s i t i o n  3.9.  Let n be an odd integer larger than 1, and 
assume that fl satisfies 

( n -  1)/2 > l n f l >  1 (3.42) 

Then  all symmetric fixed points of order  n are stable. 

Proof. Let z = a.(f l)v be a symmetric fixed point  of order  n > 1. If we 
assume that  n is odd, then Fvkl >/1 for all k, and the eigenvalue ( s - r )  of 
D~?~(z) can be bounded as follows: If # # v and C~Cv # O, then 

s -  r = ~k~__l {1 - tanh2[fian(fl)vk] }(1 -- c~c~efe;) 

<~ fl { 1 - -  tanh Z[fla~(fl ) ] } < 4fie 2Ba~ (3.43) 

,u v In the first inequality we have used that 1 - c ~ c ~ e k e  ~ = 2 for half of the 
values of k, and 1 - C~Cveke ~ v =  0 for the other  half. Since a~(fl) converges 
to a positive value as fl ~ oo, it is clear that  z is stable for large B. 

In order  to estimate fla.(fl), we bound  the factors t a n h [ ( n -  2 re )x ]  in 
(3.11) from below by tanh(x)  and then sum as in (3.15): 

an(fl ) = 7 ~(flan(fl ) ) 

>>- ~ ( n ) n - 2m tanh [ fla,,(fl ) ] 
0 <~ m <~ n / 2  El 

( n -  1)/2 tanh[f lan(f l )]  (3.44) 

By using (3.42) and the fact that t a n h " ( x ) >  - 2 x ,  for x > 0, we obtain 

2 
fla~(fl) > 2 tanh[fla,(fi) ] >i 2 f l a , ( f i ) -~  [flan(fl) ] 3 (3.45) 

which implies that  flan(fi)> 1. This bound  can be improved by applying 
(3.44) and (3.42) again: Since t a n h ( 1 ) >  1/2, we have 

�9 > In fl (3.46) f lan( f l )> f l  2 -n ( n - 1 1 / 2  
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Substituting this into (3.43) and using the fact that /3>4 by assumption 
(3.42), we see that the eigenvalue ( s -  r) is smaller than 1. This completes 
the proof of Proposition 3.9. I 
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